Forward hysteresis and backward bifurcation caused by culling in an avian influenza model.

نویسندگان

  • Hayriye Gulbudak
  • Maia Martcheva
چکیده

The emerging threat of a human pandemic caused by the H5N1 avian influenza virus strain magnifies the need for controlling the incidence of H5N1 infection in domestic bird populations. Culling is one of the most widely used control measures and has proved effective for isolated outbreaks. However, the socio-economic impacts of mass culling, in the face of a disease which has become endemic in many regions of the world, can affect the implementation and success of culling as a control measure. We use mathematical modeling to understand the dynamics of avian influenza under different culling approaches. We incorporate culling into an SI model by considering the per capita culling rates to be general functions of the number of infected birds. Complex dynamics of the system, such as backward bifurcation and forward hysteresis, along with bi-stability, are detected and analyzed for two distinct culling scenarios. In these cases, employing other control measures temporarily can drastically change the dynamics of the solutions to a more favorable outcome for disease control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

Evolutionary Repercussions of Avian Culling on Host Resistance and Influenza Virulence

BACKGROUND Keeping pandemic influenza at bay is a global health priority. Of particular concern is the continued spread of the influenza subtype H5N1 in avian populations and the increasing frequency of transmission to humans. To decrease this threat, mass culling is the principal strategy for eradicating influenza in avian populations. Although culling has a crucial short-term epidemiological ...

متن کامل

Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network

Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...

متن کامل

Backward bifurcation and hysteresis in models of recurrent tuberculosis

An epidemiological model is presented that provides a comprehensive description of the transmission pathways involved for recurrent tuberculosis (TB), whereby cured individuals can become reinfected. Our main goal is to determine conditions that lead to the appearance of a backward bifurcation. This occurs when an asymptotically stable infection free equilibrium concurrently exists with a stabl...

متن کامل

Analytic theory of L\H transition, barrier structure, and hysteresis for a simple model of coupled particle and heat fluxes

The two-field !pressure/density" model for the L→H transition is extended and analyzed qualitatively. In its original form the model is ambiguous as to the location of the transition within the range of bistability of particle and thermal fluxes. Here, the model is regularized by including !i" hyperdiffusion, !ii" time dependence, and !iii" curvature of the pressure profile. The regularizations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical biosciences

دوره 246 1  شماره 

صفحات  -

تاریخ انتشار 2013